Installation and service instructions

for contractors

Electronic temperature differential control unit Vitosolic 100 Type SD1

For applicability, see the last page

VITOSOLIC 100

Safety instructions

Please follow these safety instructions closely to prevent accidents and material losses.

Safety instructions explained

Danger

This symbol warns against the risk of injury.

Please note

This symbol warns against the risk of material losses and environmental pollution.

Note

Details identified by the word "Note" contain additional information.

Target group

These instructions are exclusively designed for qualified personnel.

- Work on electrical equipment must only be carried out by a qualified electrician.
- The system must be commissioned by the system installer or a qualified person authorised by the installer.

Regulations

Observe the following when working on this system

- all legal instructions regarding the prevention of accidents,
- all legal instructions regarding environmental protection,
- the Code of Practice of relevant trade associations.
- all current safety regulations as defined by DIN, EN, DVGW, VDE and all locally applicable standards

Working on the system

- Isolate the system from the power supply and check that it is no longer 'live', e.g. by removing a separate fuse or by means of a main isolator.
- Safeguard the system against unauthorised reconnection.

Please note

Electronic modules can be damaged by electrostatic discharges.

Touch earthed objects, such as heating or water pipes, to discharge static loads.

Repair work

Please note

Repairing components that fulfil a safety function can compromise the safe operation of your heating system.

Replace faulty components only with original Viessmann spare parts.

Safety instructions (cont.)

Ancillary components, spare and wearing parts

Please note Spare and wearing parts that have not been tested together with the heating system can compromise its function. Installing non-authorised components and non-approved modifications or conversions can compromise

safety and may invalidate our warranty.

For replacements, use only original spare parts supplied or approved by Viessmann.

Index

Installation instructions

Preparing for installation

Installation information	6
System example 1	6
System example 2	11
System example 3	18
System example 4	

Installation sequence

Fitting the solar control unit	32
Overview of electrical connections	33
Solar circuit pump	33
Pump/valve at output R2	35
High limit safety cut-out	36
Collector temperature sensor	37
Cylinder temperature sensor	38
Temperature sensor	38
Power supply	39

Service instructions

Commissioning

Switching the power ON	41
Navigation through the menu	
Selecting the system scheme	
Setting system parameters	
Resetting system parameters	
Carrying out a relay test	

Service scans

Scanning temperatures and	operating conditions	45
---------------------------	----------------------	----

Troubleshooting

Fault messages	46
Checking sensors	
Changing the fuse	47

Function description

Parameter overview	48	
System scheme		
Collector limit temperature		
Collector cooling function		
Minimum collector temperature limit	61	276
Minimum collector temperature limit		5442

Index

Index (cont.)

Frost protection function	62
Reverse cooling function	62
Interval function	62
Heat statement	63
Speed control	63
Parts list	65
Specification	66
Specification	00
Appendix	67
Certificates	
Declaration of conformity	60
	00
Keyword index	69

Installation information

Danger

Subject to system configuration, DHW temperatures above 60 °C can occur. DHW with temperatures in excess of 60 °C can cause scalding. To limit the temperature to 60 °C, install mixing equipment, e.g. a thermostatically controlled mixing valve (accessory). Install a mixer tap as anti-scalding device at the draw-off point.

System example 1

DHW heating with dual-mode DHW cylinder

Main components

- Viessmann solar collectors
- DHW cylinders Vitocell 100-B or Vitocell 300-B
- Vitosolic 100, type SD1
- Solar-Divicon
- Wall mounted oil/gas boiler or oil/gas boiler

Function description

DHW heating with solar energy

Solar circuit pump R1 (3) starts and DHW cylinder (1) is heated up if the temperature differential between collector temperature sensor S1 (3) and cylinder temperature sensor S2 (1) exceeds the starting temperature differential DT E. Solar circuit pump R1 (3) stops if:

- The actual temperature falls below the stop temperature differential DT A
- The electronic temperature limit of control unit (36) is exceeded (max. 90 °C)
- The temperature selected at high limit safety cut-out (12) (if installed) is reached

Additional function for DHW heating

The requirements for the additional function are achieved through circulation pump R2 (15).

Suppression of DHW cylinder reheating by the boiler

Coding address "67" in boiler control unit (2) defaults a third set DHW temperature (setting range 10 to 95 °C). This value must be below the first set DHW temperature. DHW cylinder (1) (solar circuit pump R1 (3) runs) if this set value cannot be achieved by the solar thermal system.

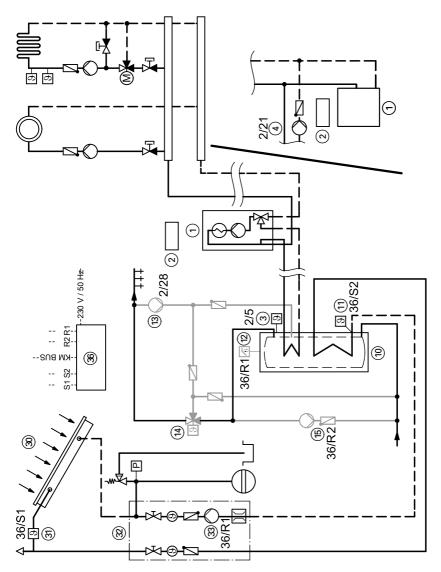
DHW heating without solar energy

The upper section of DHW cylinder (10) is heated by boiler (1). The cylinder thermostat with cylinder temperature sensor (3) of boiler control unit (2) regulates cylinder heating (4).

Required settings at the solar control unit

Param eter	Delivered condition	Description	Setting
ANL	1	Without auxiliary function for DHW heating	1
		With auxiliary function for DHW heating (see page 55)	4
DTE	8° C	Start temperature differential for solar circuit pump at R1	
DT A	4 °C	Stop temperature differential for solar circuit pump at R1	
S SL	60 °C	Set cylinder temperature (see page 52)	
For furth	ner functions	, see chapter "Function description" from page 48.	

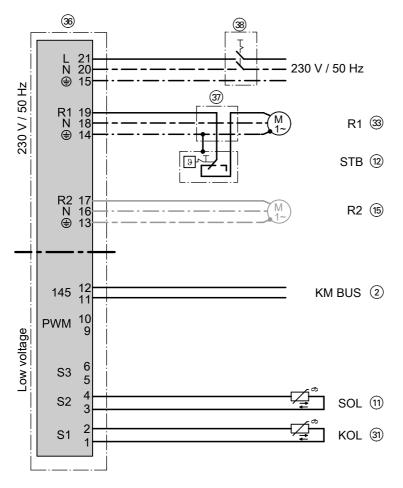
Note


"DT E" can be set at least 0.5 K higher than **"DT A"** and up to 0.5 K lower than **"DT S"** (see page 50).

"DT A" can be set up to 0.5 K below **"DT E"**.

Information regarding speed control of the solar circuit pump

Observe chapter "Speed control" (see page 63).


Hydraulic installation scheme ID: 4605028_0906_02

Equipment required

ID: 4605028_0906_02				
Pos.	Description			
1	Oil/gas boiler or wall mounted oil/gas boiler			
Ċ	with			
(2)	Boiler and heating circuit control unit			
2 3 4	Cylinder temperature sensor			
(4)	Circulation pump for cylinder heating			
0	(integrated for wall mounted oil/gas boiler)			
(10)	Dual-mode DHW cylinder			
10 11 12 13	Cylinder temperature sensor S2			
(12)	High limit safety cut-out (accessory)			
(13)	DHW circulation pump (on site)			
	(internal/external extension may be required for connecting a wall mounted			
	oil/gas boiler)			
(14)	Thermostatic mixing valve (accessory)			
(15)	Circulation pump R2 (transfer) (on site)			
30	Solar collectors			
(4) (5) (3) (3) (3) (3) (3)	Collector temperature sensor S1			
32	Solar-Divicon (accessory)			
-	with			
33	Solar circuit pump R1			
33 39 39 39 39	Vitosolic 100, type SD1			
37	Junction box (on site)			
38	ON/OFF switch (on site)			

Electrical installation scheme

ID: 4605028_0906_02

System example 2

Vitodens – DHW heating and central heating backup with a multimode heating water buffer cylinder

Main components

- Viessmann solar collectors
- Vitocell 340-M or Vitocell 360-M multimode heating water buffer cylinder with integral DHW heating, with or without stratification system
- Vitosolic 100, type SD1
- Solar-Divicon
- Wall mounted gas boiler from the year of manufacture 2008
 - Vitodens 200-W, type WB2B
 - Vitodens 300-W, type WB3C

Function description

DHW heating with solar energy

Solar circuit pump R1 3 starts and heating water buffer cylinder 1 is heated up if the temperature differential between collector temperature sensor S1 and cylinder temperature sensor S2 1 exceeds the start temperature differential DT E.

Solar circuit pump R1 3 stops if:

- The actual temperature falls below the stop temperature differential DT A
- The electronic temperature limit of control unit (36) is exceeded (max. 90°C)
- The temperature selected at high limit safety cut-out ⁽¹²⁾ (if installed) is reached

Entire heating water buffer cylinder 0 is heated by the solar thermal system if the insolation is adequate.

The upper part of heating water buffer cylinder (10) will only be reheated by boiler (1) if the actual water temperature falls below the set temperature selected at boiler control unit (2).

If the solar energy is inadequate to cover the entire heating demand, the DHW in the lower part of heating water buffer cylinder (10) will be preheated by solar energy. The DHW in the upper part of the cylinder is heated to the required temperature by boiler (1).

The burner starts and three-way diverter valve (46) switches to position "AB-A" via cylinder temperature sensor (16) of the boiler control unit. When the set DHW temperature has been reached, the burner stops and three-way diverter valve (46) switches to position "AB-B".

Suppression of DHW cylinder reheating by the boiler

Coding address "67" in boiler control unit ② defaults a third set DHW temperature (setting range 10 to 95 °C). This value must be below the first set DHW temperature. Heating water buffer cylinder ⑩ is only heated by boiler ① (solar circuit pump R1 ③ runs) if this set value cannot be achieved by the solar thermal system.

DHW heating without solar energy

The upper area of heating water buffer cylinder (10) is heated by boiler (1). The integral instantaneous water heater/ standby section is heated by the surrounding buffer cylinder water. The cylinder thermostat with cylinder temperature sensor (16) of boiler control unit (2) controls three-way diverter valve (46).

Central heating with solar energy

The system provides central heating if the temperature at sensor (15) is adequate.

Central heating without solar energy

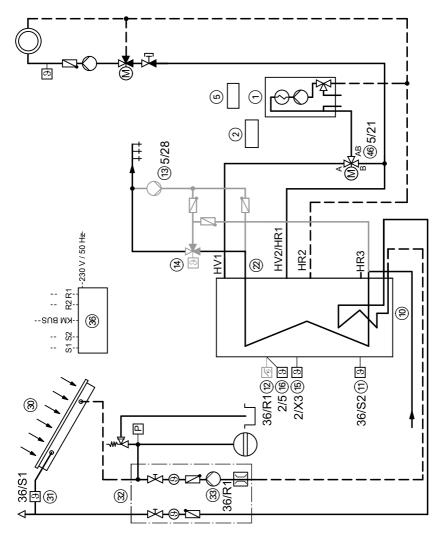
If the temperature at sensor (15) is inadequate, the burner and circulation pump in the Vitodens are started. The area between HV2/HR1 and HR2 in heating water buffer cylinder (10) is heated up to the set temperature for the heating circuits in weather-compensated mode. When this set temperature is exceeded, the burner and, after a delay, the circulation pump in the Vitodens are stopped.

Param eter	Delivered condition	Description	Setting
ANL	1	Without auxiliary function for DHW heating	1
DT E	8° C	Start temperature differential for solar circuit pump at R1	
DT A	4 °C	Stop temperature differential for solar circuit pump at R1	
S SL	60 °C	Set cylinder temperature (see page 52)	
For furth	ner functions	, see chapter "Function description" from page 48.	

Required settings at the solar control unit

Note

"DT E" can be set at least 0.5 K higher than "DT A" and up to 0.5 K lower than "DT S" (see page 50). "DT A" can be set up to 0.5 K below "DT E".

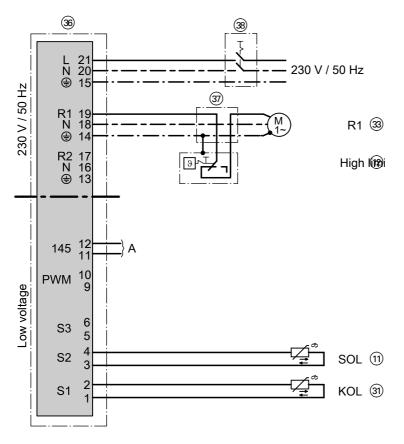

Information regarding speed control of the solar circuit pump

Observe chapter "Speed control" (see page 63).

Codes required at the boiler and heating circuit control unit

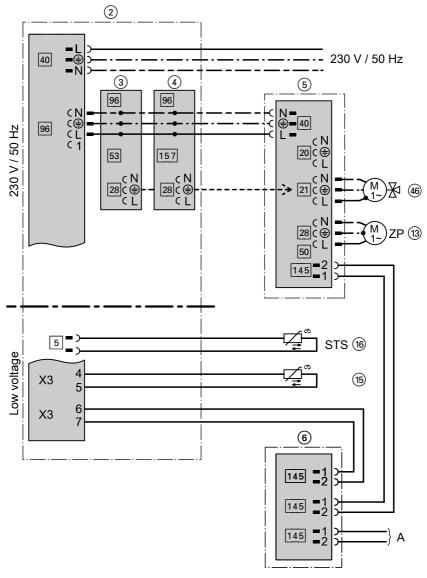
Code	Function
51:1	The internal circulation pump is only switched on when the burner
	has been started (time delay off)
53:3	System without DHW circulation pump:
	Three-way diverter valve 46 is connected to output 28 of inter-
	nal extension H1 or H2
5b:1	Internal diverter valve without function
	(DHW cylinder connected downstream of three-way diverter
	valve (46)

Hydraulic installation scheme ID: 4605029_0906_02



Equipment required

ID: 46	ID: 4605029_0906_02				
Pos.	Description				
1	Wall mounted gas boiler				
	with				
2	Boiler and heating circuit control unit				
2 3	Internal extension H1 (standard delivery for the Vitodens 300-W)				
	or				
4	Internal extension H2 (accessory)				
	or				
\sim	System with DHW circulation pump:				
(5)	External extension H1 (accessory)				
<u>(6)</u>	KM BUS distributor (accessory)				
(10)	Heating water buffer cylinder				
\frown	with				
22	Threaded DHW circulation pump (accessory)				
(15)	Temperature sensor (flow temperature sensor for low loss header; in this				
	scheme with heating water buffer cylinder) (accessory)				
	Cylinder temperature sensor (accessory)				
	Cylinder temperature sensor S2				
	High limit safety cut-out (accessory) DHW circulation pump (on site)				
	Thermostatic mixing valve (accessory)				
	Solar collectors				
3	Collector temperature sensor S1				
3	Solar-Divicon (accessory)				
	with				
(33)	Solar circuit pump R1				
36	Vitosolic 100, type SD1				
37	Junction box (on site)				
38	ON/OFF switch (on site)				
\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$	Three-way diverter valve (accessory)				


Electrical installation scheme

Vitosolic 100

ID: 4605029_0906_02

Control unit, wall mounted gas boiler

⁸ ID: 4605029_0906_02

System example 3

Vitodens – DHW heating with freshwater module and central heating backup with heating water buffer cylinder

Main components

- Viessmann solar collectors
- Freshwater module
- Heating water buffer cylinder Vitocell140-E or Vitocell 160-E
- Vitosolic 100, type SD1
- Solar-Divicon
- Wall mounted gas boiler from the year of manufacture 2008
 - Vitodens 200-W, type WB2B
 - Vitodens 300-W, type WB3C

Function description

Freshwater module 10 heats DHW when hot water is drawn. The energy supply to freshwater module 10 is provided via heating water buffer cylinder 40. Buffer cylinder 40 is heated by the solar thermal system or, in the upper area, by boiler 1.

The heated DHW is heated by freshwater module (10) according to the instantaneous water heater principle. An internal pump transports the heating water from heating water buffer cylinder (40) into the freshwater module (10). This heats the DHW in the heat exchanger of the freshwater module (10) according to the countercurrent principle. The freshwater module (10) is regulated by its internal control unit. When utilising the freshwater module with integral DHW circulation pump, the three-way diverter valve (1) in conjunction with sensors S3 (3) and S4 (12) of the freshwater module (10) can be regulated by its control unit to provide an optimum stratification of the return water into the heating water buffer cylinder (40).

DHW heating with solar energy

Solar circuit pump R1 (3) starts and heating water buffer cylinder (4) is heated up if the temperature differential between collector temperature sensor S1 (3) and cylinder temperature sensor S2 (4) exceeds the start temperature differential DT E.

Solar circuit pump R1 3 stops if:

- The actual temperature falls below the stop temperature differential DT A
- The electronic temperature limit of control unit (3) is exceeded (max. 90°C)
- The temperature selected at high limit safety cut-out ④ (if installed) is reached

Entire heating water buffer cylinder (40) is heated by the solar thermal system if the insolation is adequate.

The upper part of heating water buffer cylinder ④ will only be reheated by boiler ① if the actual water temperature falls below the set temperature selected at boiler control unit ②.

The burner starts and three-way diverter valve (46) switches to position "AB-A" via cylinder temperature sensor (42) of the boiler control unit. When the set DHW temperature has been reached, the burner stops and three-way diverter valve (46) switches to position "AB-B".

Suppression of DHW cylinder reheating by the boiler

Coding address "67" in boiler control unit (2) defaults a third set DHW temperature (setting range 10 to 95 °C). This value must be below the first set DHW temperature. Heating water buffer cylinder (40) is only heated by the boiler (solar circuit pump R1 (33) runs) if this set value cannot be achieved by the solar thermal system.

DHW heating without solar energy

The upper area of heating water buffer cylinder (40) is heated by boiler (1).

The cylinder thermostat with cylinder temperature sensor ④ of boiler control unit ② controls three-way diverter valve ④.

Central heating with solar energy

Central heating is provided via heating water buffer cylinder ④ if the temperature at sensor ④ is adequate.

Central heating without solar energy

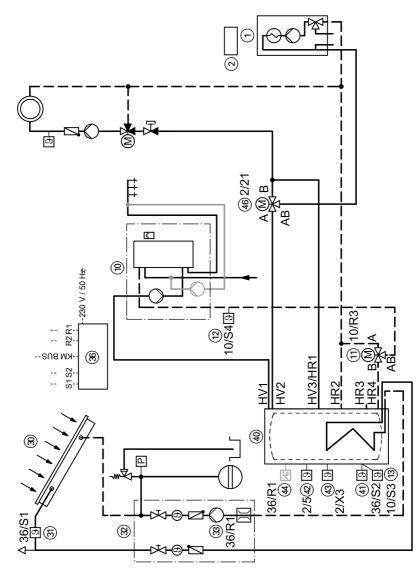
If the temperature at sensor (43) is inadequate, the burner and circulation pump in the Vitodens are started. The area between HV3/HR1 and HR3 in heating water buffer cylinder (40) is heated up to the set temperature for the heating circuits in weather-compensated mode. When this set temperature is exceeded, the burner and, after a delay, the circulation pump in the Vitodens are stopped.

Required settings on the solar control unit

Param	Delivered	Description	Setting
eter	condition		
ANL	1	Without auxiliary function for DHW heating	1
DT E	8° C	Start temperature differential for solar circuit pump	
		at R1	
DT A	4 °C	Stop temperature differential for solar circuit pump	
		at R1	
S SL	60 °C	Set cylinder temperature (see page 52)	
For furth	ner functions	, see chapter "Functions" from page 48.	

Note

"DT E" can be set at least 0.5 K higher than **"DT A"** and up to 0.5 K lower than **"DT S"** (see page 50). **"DT A"** can be set up to 0.5 K below **"DT E"**.

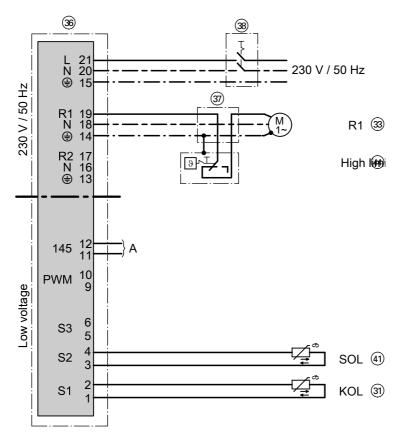

Information regarding speed control of the solar circuit pump

Observe chapter "Speed control" (see page 63).

Codes required on the boiler and heating circuit control unit

Code	Function
51:1	The internal circulation pump is only switched on when the
	burner has been started (time delay off)
53:3	System without DHW circulation pump:
	Three-way diverter valve (46) is connected to output [28] of inter-
	nal extension H1 or H2
5b:1	Internal diverter valve without function
	(DHW cylinder connected downstream of three-way diverter
	valve 46)

Hydraulic installation scheme ID: 4605030_0906_2

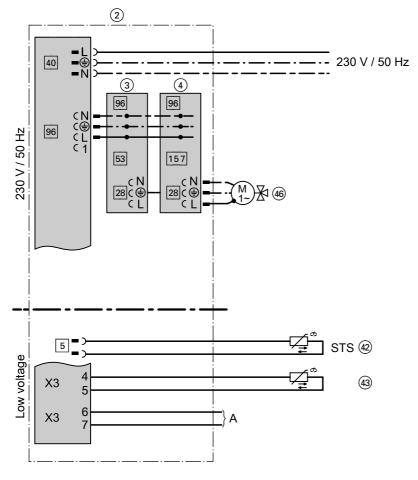

5442 276 GB

Equipment required

ID: 4605030 0906 2			
Pos.	Description		
1	Wall mounted gas boiler		
	with		
2	Boiler and heating circuit control unit		
(42)	Cylinder temperature sensor STS		
2 42 3	Internal extension H1 (standard delivery for the Vitodens 300-W)		
	or		
4	Internal extension H2 (accessory)		
(10)	Freshwater module		
\$\$\$\$\$\$\$\$\$\$\$	Three-way diverter valve R3 (accessory for (10)		
(12)	Temperature sensor S4 (accessory for $(\underline{0})$)		
(13)	Temperature sensor S3 (accessory for 10)		
(14)	ON/OFF switch (on site)		
(40)	Heating water buffer cylinder		
(41)	Cylinder temperature sensor S2		
(44)	High limit safety cut-out (accessory)		
(30)	Solar collectors		
(31)	Collector temperature sensor S1		
(32)	Solar-Divicon (accessory) with		
33	Solar circuit pump R1		
3 8 8 8 3 8 8	Vitosolic 100, type SD1		
37	Junction box (on site)		
38	ON/OFF switch (on site)		
(43)	Temperature sensor (flow temperature sensor for low loss header) (acces-		
\frown	sory)		
(46)	Three-way diverter valve (accessory)		

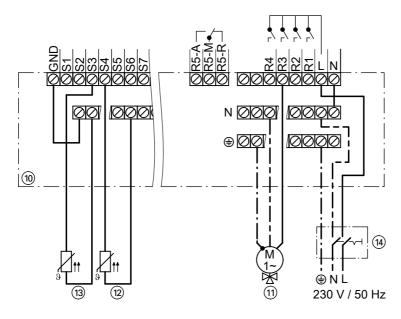
Electrical installation scheme

Vitosolic 100


ID: 4605030_0906_2

5442 276 GB

Preparing for installation


System example 3 (cont.)

Control unit, wall mounted gas boiler

Control unit, freshwater module

ID: 4605030_0906_2

System example 4

DHW heating with solar retrofit system

There are two control versions for this system example:

 Version (A): Anti-stratification with sensor S3 in DHW cylinder 2 (existing) Differential temperature control
 Version (B):

Transfer with sensor S3 in DHW cylinder 1 (retrofit) Control via thermostat function If it is possible to position the temperature sensor for the DHW circulation transfer in the existing cylinder, we recommend version (A).

Main components

- Viessmann solar collectors
- Mono-mode DHW cylinder (existing)

- Solar retrofit system with the following components:
 - Solar-Divicon SR
 - Vitosolic 100, type SD1
 - DHW cylinder Vitocell 100-W, type CUG
- Wall mounted oil/gas boiler or oil/gas boiler (existing)

Function description

DHW heating with solar energy

Solar circuit pump R1 33 starts and DHW cylinder (10) is heated up if the temperature differential between collector temperature sensor S1 (31) and cylinder temperature sensor S2 (11) exceeds the start temperature differential DT E.

Solar circuit pump R1 (33) stops if:

- The actual temperature falls below the stop temperature differential DT A
- The electronic temperature limit of control unit 36 is exceeded (max. 90°C)
- The temperature selected at high limit safety cut-out (12) (if installed) is reached

Version (A)

Transfer pump R2 (15) starts if the temperature differential between sensor S2 (1) and sensor S3 (17) exceeds the start temperature differential DT 3E. The water heated in DHW cylinder (10) is transferred to DHW cylinder 2 (18). The transfer pump R2 (15) also starts if there is a demand for DHW heating issued by the auxiliary function. Transfer pump R2 (15) stops if:

- The actual temperature falls below the shutdown temperature differential DT 3A
- When the auxiliary function for DHW heating ends

DHW circulation pump 13 (if installed) for DHW cylinder 2 (18) is controlled by boiler control unit (2).

Version (B)

Transfer pump R2 (15) starts if the temperature at sensor S3 (17) exceeds the start temperature NH E. The water heated in DHW cylinder (10) is transferred to DHW cylinder 2 (18). The transfer pump R2 (15) also starts if there is a demand for DHW heating issued by the auxiliary function. Transfer pump R2 (15) stops if:

- The actual temperature falls below the stop temperature N HA
- When the auxiliary function for DHW heating ends

DHW circulation pump (13) (if installed) for DHW cylinder 2 (18) is controlled by boiler control unit (2).

Suppression of DHW cylinder reheating by the boiler

Coding address "67" in boiler control unit (2) defaults a third set DHW temperature (setting range 10 to 95 °C). This value must be below the first set DHW temperature. DHW cylinder 2 (18) will only be heated by boiler (1) (solar circuit pump R1 (3) runs) if this set value cannot be achieved by the solar thermal system.

DHW heating without solar energy

DHW cylinder 2 (18) is heated by boiler (1). The cylinder thermostat with cylinder temperature sensor (3) of boiler control unit (2) regulates cylinder heating.

Required settings on the solar control unit

Version (A)			
Param	Delivered	Description	Setting
eter	condition		
ANL	1	With auxiliary function for DHW heating (see page 55)	8
DT E	8° C	Start temperature differential for solar circuit pump at R1	
DT A	4 °C	Stop temperature differential for solar circuit pump at R1	
DT 3E	8° C	Start temperature differential for transfer pump at R2	
DT 3A	4 °C	Stop temperature differential for transfer pump at R2	
S SL	0° C	Set cylinder temperature (see page 52)	
For furth	ner functions	, see chapter "Function description" from page 48.	

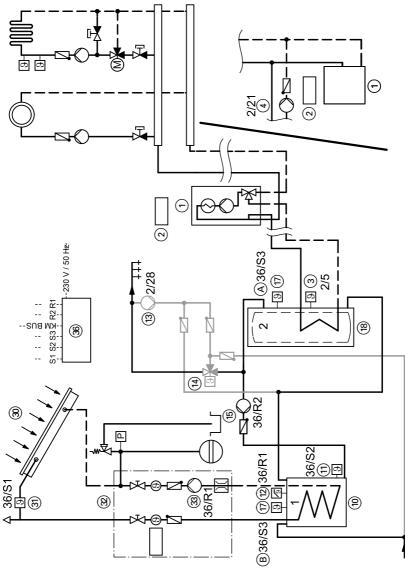
Version (B)

Param	Delivered	Description	Setting
eter	condition		
ANL	1	With auxiliary function for DHW heating (see	9
		page 55)	
DTE	8° C	Start temperature differential for solar circuit	
		pump at R1	
DT A	4 °C	Stop temperature differential for solar circuit	
		pump at R1	
N HE	40° C	Start temperature for transfer pump at R2	WW _{set} + 4 K
N HA	45 °C	Stop temperature for transfer pump at R2	WW _{set} + 2 K
S SI	60 °C	Set cylinder temperature (see page 52)	
For furth	ner functions	, see chapter "Function description" from page 4	8.

Installation

Note

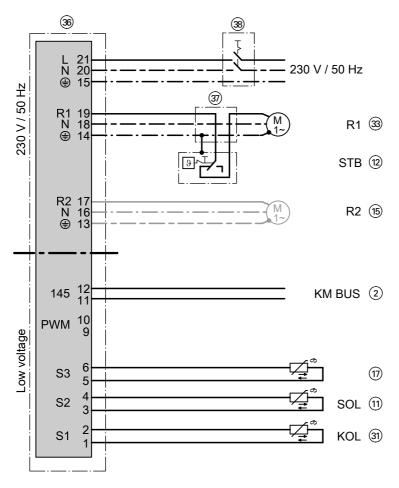
- "DT E" can be set at least 0.5 K higher than "DT A" and up to 0.5 K lower than "DT S" (see page 50).
- "DT A" can be set up to 0.5 K below "DT E".
- WW_{set} is the set DHW temperature of the DHW cylinder 2 (existing). Scan this value at the boiler control unit. When adjusting "N HE" observe the set cylinder temperature "S SL". If necessary, adjust the set DHW temperature of DHW cylinder 2 a little lower at the boiler control unit.



Installation and service instructions of the boiler control unit

Information regarding speed control of the solar circuit pump

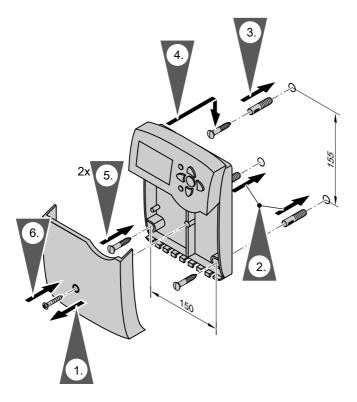
Observe chapter "Speed control" (see page 63).


Hydraulic installation scheme ID: 4605031_0906_01

Equipment required

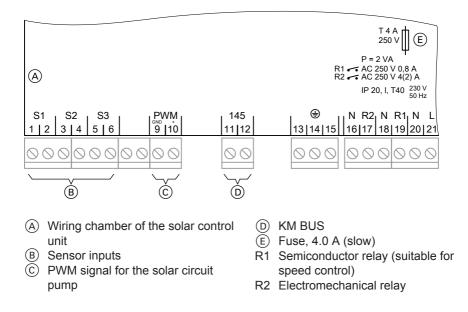
ID: 4605031_0906_01			
Pos.	Description		
1	Oil/gas boiler or wall mounted oil/gas boiler		
	with		
2 3 4	Boiler and heating circuit control unit		
3	Cylinder temperature sensor		
4	Circulation pump for cylinder heating		
	(integrated for wall mounted oil/gas boiler)		
(18)	DHW cylinder 2, mono-mode (existing)		
(10)	DHW cylinder 1, mono-mode (solar retrofit system)		
18 19 11 12 13	Cylinder temperature sensor S2		
(12)	High limit safety cut-out (accessory)		
(13)	DHW circulation pump (on site)		
	(internal/external extension may be required for connecting a wall mounted		
	oil/gas boiler)		
(4) (3) (3) (3) (3)	Thermostatic mixing valve (accessory)		
(30)	Solar collectors		
(31)	Collector temperature sensor S1		
(32)	Solar-Divicon SR (solar retrofit system)		
\bigcirc	with		
33	Solar circuit pump R1		
\bigcirc	and		
36	Vitosolic 100, type SD1		
36 37 38	Junction box (on site)		
38)	ON/OFF switch (on site)		
	DHW circulation diversion		
(15) (17)	Circulation pump R2 (transfer) (accessory)		
$\underline{\mathbb{O}}$	Temperature sensor S3		

Electrical installation scheme



ID: 4605031_0906_01

5442 276 GB


Fitting the solar control unit

Select an installation location near the DHW cylinder, taking account of the electrical connections and their cable lengths.

Before closing the solar control unit, make all electrical connections and apply a strain relief to all cables/leads.

Overview of electrical connections

Solar circuit pump

Possible pumps

Standard solar circuit pumps		High efficiency pumps	Pumps with PWM input	
Without individual speed control (with integral auxili- ary capacitor)	With individual speed control		Note Use only solar pumps, not heating circuit pumps.	
"RPM" = 1	"RPM" = 0 Delivered condi- tion	"RPM" = 0	 WILO pumps: "RPM" = 2 GRUNDFOS pumps: "RPM" = 3 	

Installation sequence

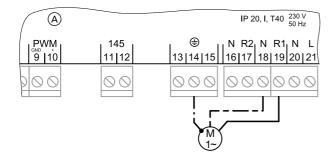
Solar circuit pump (cont.)

Installation

The circulation pump with connecting cable is part of the Solar-Divicon pump station.

Separate installation and service instructions

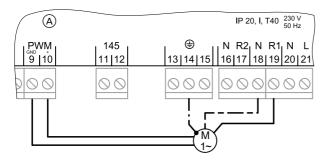
Alternative pumps must be type-tested and installed in accordance with the manufacturer's details


Connection

3-core cable with a cross-section of 0.75 mm² Rated current: 0.8 A

Note

Pumps that draw more than 190 W must be connected via an additional relay (coupler relay). Disable the speed control for this pump (see chapter "Speed control").


Standard pump

(A) Wiring chamber of the solar control R1 Solar circuit pump unit

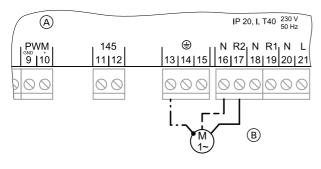
Solar circuit pump (cont.)

Pump with PWM input

- (A) Wiring chamber of the solar control unit
- R1/PWM Solar circuit pump

Pump/valve at output R2

Installation


Pump and valve must be type-tested and installed in accordance with manufacturer's details.

Connection

3-core cable with a cross-section of 0.75 mm².

Rated current: max. 4(2) A

Pump/valve at output R2 (cont.)

- (A) Wiring chamber of the solar control unit
- (B) Pump or valve

High limit safety cut-out

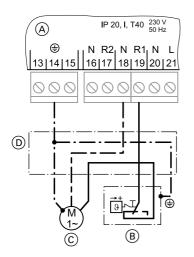
A high limit safety cut-out in the consumer is required when less than 40 litres cylinder volume is available per m² absorber area. This installation safely prevents temperatures in excess of 95 °C in the consumer.

Note

For the Vitocell 100, observe the max. collector area that can be connected.

Installation

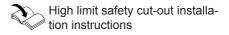
Install the sensor of the high limit safety cut-out inside the cylinder cap (Vitocell 300 accessory).


Connection

3-core cable with a cross-section of 1.5 mm².

Cylinder cap installation instructions

High limit safety cut-out (cont.)


- (A) Wiring chamber of the solar control unit
- (B) High limit safety cut-out

Temperature setting

Delivered condition: 120 °C Requires adjustment to 95 °C

Solar circuit pump (C)

Junction box (on site)

Collector temperature sensor

Installation

Collector installation instructions

Connection

Connect the sensor to S1 (terminals 1 2-core cable with a cross-section of 1.5 mm².

Note

Never route this cable immediately next to 230/400 V cables.

Installation sequence

Cylinder temperature sensor

Installation

With the threaded elbow.

Connection

Connect the sensor to S2 (terminals 3 and 4).

Extension of the connecting cable: 2-core cable with a cross-section of 1.5 mm².

Temperature sensor

Installation

DHW cylinder installation instruc-

Note Never route this cable immediately next to 230/400 V cables.

Temperature sensor (cont.)

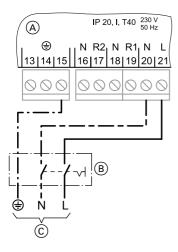
Note

Never wrap insulating tape around the sensor. Seal in the sensor well.

Connection

Connect the sensor to S3 (terminals 5 and 6). Extension of the connecting cable: 2-core cable with a cross-section of 1.5 mm².

Note


Never route this cable immediately next to 230/400 V cables.

Power supply

Regulations

Carry out the power supply connection and all earthing measures (i.e. RCD circuit) in accordance with IEC 364, the requirements of your local power supply utility, VDE or national regulations. Protect the power cable to the control unit with an appropriate fuse/MCB.

Power supply (cont.)

- (A) Solar control unit wiring chamber
- B ON/OFF switch (on site)
- C Mains voltage 230 V/50 Hz

Provide the power supply connection (230 V~) via a two-pole mains isolator (on site).

Disconnect the system by means of a device which simultaneously separates all non-earthed conductors with at least 3 mm contact separation.

Danger

Incorrect core termination can cause severe injuries and damage to the equipment. Never interchange cores "L" and "N":

L Terminal 21

N Terminal 20

4. Check which type of solar circuit

ter "RPM" accordingly (see

pages 33 and 43).

pump is connected and set parame-

Switching the power ON

- 1. Check whether all electrical connections have been correctly made.
- 2. Check that the high limit safety cutout (if required) is connected.
- 3. Switch ON the power; the solar control unit then implements an initiation phase. The solar control unit is now in automatic mode.
- Navigation through the menu
- / 🛆 🖉 🕕 🕦 \odot KOL 38.4°C (B) (A)

Controls

- (A)OK key; to confirm your menu selection or adjustment
- ₿ Symbols line
 - Terminating an adjustment already begun (the value reverts to its previous setting)
- ▲ / ▼ Cursor keys Navigation through the menu
- / Cursor keys To set a value Flashing "SET" means that values can be changed.

Navigation through the menu (cont.)

Calling up the menu The symbol line on the display shows which keys to use to make adjustments and scans.

Note

After approx. 4 min, the display changes to show the collector temperature, if no further adjustments are made.

Symbols on the display

These symbols are not always displayed, but appear subject to the system operating condition.

Symbol	Permanent display	Flashing
$\overline{\bigcirc}$	Fully functioning system	—
0	Relay 1 ON	_
	(solar circuit pump)	
<u> </u>	Relay 2 ON	—
*	Set DHW temperature	Collector cooling function,
	reached	return cooling enabled
*	Frost protection active	Failed to reach minimum col-
		lector temperature
\triangle	—	Emergency collector shut-
		down (collector limit tempera-
		ture reached) or cylinder emergency stop active
<u></u>	Sensor fault:	
∑i∑+∦		
A	4	
≜+ ⊘	Manual mode:	
	C III	
SET	Parameters can be changed	Change parameter with ▲ / ▼

Selecting the system scheme

Press the following keys:

- 1. **HANL 1"** and the display will show the respective scheme.
- 2. OK "SET" flashes.

- **3.** ► for the required scheme.
- 4. OK to confirm.

See system scheme from page 51.

Setting system parameters

Press the following keys:

- **1. "ANL"** and the display will show the respective scheme.
- 2. ▼ until the required parameter is shown (see table on page 48).
- 3. OK "SET" flashes.
- **4.** \triangleright / \triangleleft for the selected value.
- 5. OK to confirm.

Resetting system parameters

If a different system scheme is selected, all parameters are returned to their original state.

Carrying out a relay test

Press the following keys:

- **1. "ANL"** and the display will show the respective scheme.
- 2. ▼ select "HND 1" or "HND 2". HND 1 Relay 1 HND 2 Relay 2
- 3. OK "SET" flashes.

Carrying out a relay test (cont.)

- 4.
 4.
 Auto Control mode
 On in (100%)
 "
 "
 "and "①" or "①" are displayed and "△" flashes.
 OFF OFF
 "
 "
 " is shown and "△" flashes.
- 5. OK to confirm.
- 6. After the relay test has been completed, select "Auto".

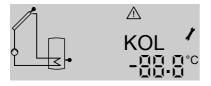
Scanning temperatures and operating conditions

Subject to system configuration and settings made, the following values can be scanned with keys \blacktriangle / \checkmark :

Display	Description
KOL °C	Collector temperature
TSPU °C	DHW temperature
S3 °C	Temperature at a sensor S3 that may be connected
n1 %	Relative speed of the solar circuit pump
n2	Status of relay R2: OFF: Relay off On: Relay on
hP1 h	Hours run of the device at output relay R1 (solar circuit pump)
hP2 h	Hours run of the device at output relay R2
kWh	Amount of heat if a heat meter is ena-
MWh	bled Note Add the values for MWh and kWh together.

Resetting the hours run and the energy volume

Whilst this value is displayed, press the following keys:


- 1. OK "SET" flashes; value 0 is displayed.
- 2. OK to confirm.

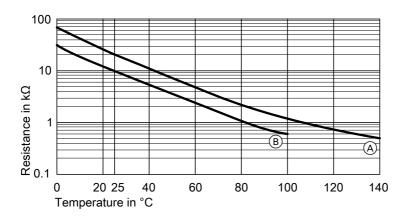
Fault messages

Sensor faults:

- Display background light flashes
- The sensor symbol in the system scheme flashes quickly
- flashes

Example - collector temperature sensor short circuit

Possible displays:

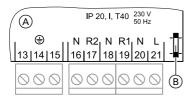

-88.8 Sensor short circuit

888.8 Sensor break

Note

Further scans can be carried out with keys \land / \lor .

Checking sensors


- (A) Resistor 20 k Ω (sensor S1, collector temperature sensor)
- 1. Disconnect the respective sensor and measure its resistance.
- (B) Resistor 10 k Ω (sensors S2 and S3)
- 2. Compare the measurement with the actual temperature (for scanning see page 45). Check the installation and, in case of severe deviation, replace the sensor.

Checking sensors (cont.)

Specification

Sensor NTC	10 kΩ at 25 °C	20 kΩ at 25 °C
IP rating	IP 53	IP 53
Permissible ambient		
temperature		
during operation	–20 to + 90 °C	–20 to + 200 °C
during storage and	–20 to + 70 °C	–20 to + 70 °C
transport		

Changing the fuse

- (A) Solar control unit wiring chamber
- B Fuse, 4 A (slow)

Open the solar control unit wiring chamber.

A spare fuse is included in the fuse holder.

Parameter overview

The following parameters can be set subject to the actual system configuration:

Display	Parameter	Delivered	Setting range	System
		condition		scheme
ANL	System scheme	1	1–10	
DT E	Start temperature differen- tial for solar circuit pump R1	8 °C	1.5 – 20 °C	
			DT E < DT S	
DT A	Stop temperature differen- tial for solar circuit pump R1	4 °C	1.0 – 19.5 °C	1 to 9
S SL	Set cylinder temperature (see page 52)	60 °C	4 – 90 °C	
DT 1E	Start temperature differen- tial for solar circuit pump R1 (consumer 1)	8 °C	1.5 – 20 °C	
			DT 1E < DT 1S	
DT 1A	Stop temperature differen- tial for solar circuit pump R1 (consumer 1)	4 °C	1.0 – 19.5 °C	
S 1SL	Set cylinder temperature (consumer 1) (see page 52)	60 °C	4 – 90 °C	10
DT 2E	Start temperature differen- tial for solar circuit pump R1 and valve R2 (consumer 2)	8 °C	1.5 – 20 °C DT 2E < DT 2S	10
DT 2A	Stop tomporature differen	4 °C	1.0 – 19.5 °C	
DTZA	Stop temperature differen- tial for solar circuit pump R1 and valve R2 (consumer 2)	40	1.0 – 19.5 C	
S 2SL	Set cylinder temperature (consumer 2) (see page 52)	60 °C	4 – 90 °C	

Parameter overview (cont.)

Display	Parameter	Delivered condition	Setting range	System scheme
NOT	Collector limit temperature (see page 61)	130 °C	110 – 200 °C	
OKX	Collector cooling function	OFF	OFF/ON	
КМХ	(maximum collector temper- ature limit) (see page 61)	110 °C	90 – 190 °C	1 to 10
OKN	Minimum collector tempera-	OFF	OFF/ON	
KMN	ture limit (see page 61)	10 °C	10 – 90 °C	
OKF	Frost protection	OFF	OFF/ON	
KFR	(see page 62)	4 °C	_10 − +10 °C	
PRIO	Sequence in which the con- sumers are heated up	1	0 – 2	
ISP	Pump run break duration, cycle pause time	2 min	1 – 30 min	10
tUMW	Break intervals	15 min	1 – 30 min]
ORUE	Return cooling function (see page 62)	OFF	OFF/ON	1 to 10
ORK	Interval function (see page 62)	OFF	OFF/ON	
DT 3E	Start temperature differen- tial for transfer pump R2	3° 8	0 – 20 °C	
DT 3A	Stop temperature differen- tial for transfer pump R2	4 °C	0.5 – 19.5 °C	7
MX3E	Maximum limit S3 on	58 °C	0 – 94.5 °C	/
MX3A	Maximum limit S3 off	60 °C	0.5 – 95 °C	
MN3E	Minimum limit S3 on	10 °C	0.5 – 90 °C	
MN3A	Minimum limit S3 off	5 °C	0 – 89.5 °C	
NH E	Starting temperature for the thermostat function	40 °C	0 – 89.5 °C	3, 5, 9
NH A	Switch-off temperature for the thermostat function	45 °C	0.5 – 90 °C	3, 5, 9

 \blacktriangleright

Function description

Parameter overview (cont.)

Display	Parameter	Delivered	Setting range	System
		condition		scheme
OWMZ	Heat statement	OFF	OFF/ON	
VMAX	(see page 63)	5.0 l/min	0.1 – 20 l/min	
at 100%				
pump				
speed				
MEDT		3	0-3	1 to 10
MED%		40	20 – 70	
RPM	Speed control	0	0-3	
	(see page 63)			
n1MN ^{*1}	Minimum speed	30 %	30/20 – 100 %	
	(see page 63)			
DT S ^{*1}	Differential temperature for	10 K	0.5 – 30 K	
	the start of the speed regu-			
	lation			1 40 0
	(see page 63)			1 to 9
ANS ^{*1}	Rise	2 K	1–20 K	
	(see page 63)			
DT 1S ^{*1}	Differential temperature for	10 K	0.5 – 30 K	
	the start of speed regulation			
	(consumer 1)			
	(see page 63)			
ANS1 ^{*1}	Rise (consumer 1)	2 K	1–20 K	
	(see page 63)			10
DT 2S ^{*1}	Differential temperature for	10 K	0.5 – 30K	10
	the start of speed regulation			
	(consumer 2)			
	(see page 63)			
ANS2 ^{*1}	Rise (consumer 2)	2 K	1 – 20 K	
	(see page 63)			
HND1	Manual mode relay 1	AUTO	OFF/ON	
	(see page 43)			1 to 10
HND2	Manual mode relay 2	AUTO	OFF/ON	1 to 10
	(see page 43)			
PROG	Software version of the solar	_	_	
	control unit			
VERS	Hardware version		_	_

^{*1} Only adjustable with setting RPM > 0.

System scheme

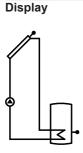
10 system schemes can be achieved with the solar control unit. Selection via parameter "**ANL**" (see page 43). All system schemes include the "**ANL 1**" functions (system scheme 1):

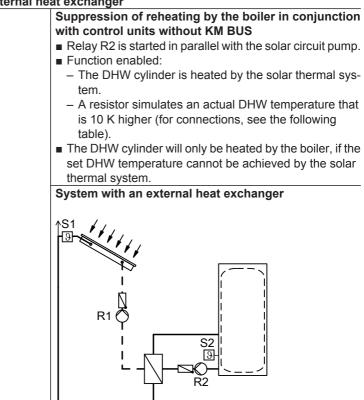
- Dual-mode DHW heating
- Suppression of reheating by the boiler in conjunction with control units with KM BUS
- Maximum DHW cylinder temperature limit

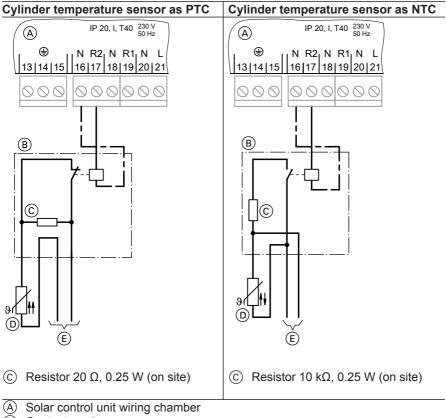
Auxiliary functions can be enabled for every system scheme.

- Collector limit temperature (see page 61)
- Collector cooling function (see page 61)

- Collector minimum temperature limit (see page 61)
- Frost protection function (see page 62)
- Reverse cooling function (see page 62)
- Interval function (see page 62)
- Heat statement (see page 63)
- Speed control (see page 63)


"ANL" = 1— Standard scheme

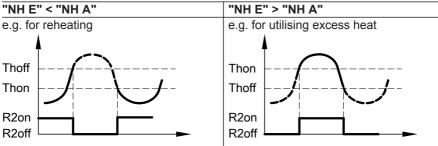

Dual-mode DHW heating with suppression of reheating by the boiler in conjunction with control units with KM BUS


junction with control u	
Display	 Temperature differential control Determination of the temperature differential between collector temperature sensor S1 and cylinder temperature sensor S2. Solar circuit pump R1 on: "DT E" is exceeded Solar circuit pump R1 off: The actual temperature falls below the stop temperature differential "DT A" Cylinder temperature limit Solar circuit pump R1 off: When reaching the set cylinder temperature "S SL".
	 Suppression of reheating by the boiler in conjunction with control units with KM BUS Function enabled: The DHW cylinder is heated by the solar thermal system. Connection of the KM BUS to terminals 11 and 12 in the solar control unit. In the boiler control unit, coding address "67" defaults a third set DHW temperature (This value must be below the first set DHW temperature). See the installation and service instructions of the boiler control unit. The DHW cylinder will only be heated by the boiler, if this set value cannot be achieved by the solar thermal system. Note In some boiler control units, the PCB must be replaced (see page 67).

"ANL" = 2

Dual-mode DHW heating with suppression of reheating by the boiler in conjunction with control units without KM BUS and/or control of the secondary pump of an external heat exchanger

- (B) Contactor relay
- E To the boiler control unit; connection for cylinder temperature sensor
- D Cylinder temperature sensor of the boiler control unit


"ANL" = 3

Dual-mode DHW heating and thermostat function

Display

Thermostat function Output R2 is used for this function. Relay R2 switches subject to the temperature at S3 (see the following table).

Different effects can be achieved by determining the start and stop temperatures:

"ANL" = 4

Dual-mode DHW heating and auxiliary function

Display

Additional function for DHW heating

- Connection of the transfer pump at R2.
- Signal for starting the transfer pump R2 via the KM BUS of the boiler control unit. This also heats the lower area of the DHW cylinder to the required temperature.

Note

In some boiler control units, the PCB must be replaced (see page 67).

Function description

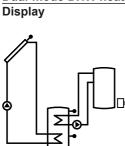
System scheme (cont.)

- 1. Connect the KM BUS at terminals 11 and 12 in the solar control unit.
- 2. Program the second set DHW temperature at the boiler control unit.

Installation and service instructions; boiler control unit

3. Adjust the fourth DHW phase at the boiler control unit.

Operating instructions, boiler

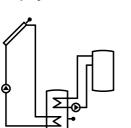

Danger

DHW with temperatures in excess of 60 °C can cause scalding.

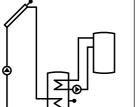
To limit the temperature to 60 °C, install mixing equipment, e.g. a thermostatically controlled mixing valve (accessory). Install a mixer tap as anti-scalding device at the draw-off point.

"ANL" = 5

Dual-mode DHW heating, thermostat function and auxiliary function

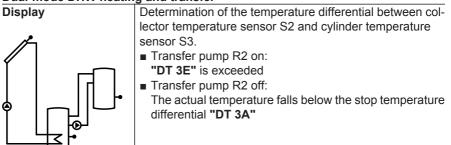


Output R2 enables the thermostat function (see page 55) and the auxiliary function (see page 55) to be achieved.

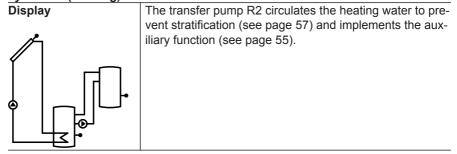

"ANL" = 6

Display

Dual-mode DHW heating and maximum cylinder temperature control


When exceeding the set cylinder temperature "S SL" (see page 52) the transfer pump R2 will start.

Excess heat is transferred, e.g. to the pre-heating stage.


"ANL" = 7

Dual-mode DHW heating and transfer

"ANL" = 8

Dual-mode DHW heating, auxiliary function and transfer with sensor S3 in DHW cylinder 2 (existing)

5442 276 GB

"ANL" = 9

Dual-mode DHW heating, auxiliary function and transfer with sensor S3 in DHW cylinder 1 (retrofit)

Display	The transfer pump R2 circulates the heating water to pre-
	vent stratification (see page 57) and implements the aux- iliary function (see page 55).
	ן ן

"ANL" = 10

Dual-mode DHW heating, heating of consumer 2 via the three-way diverter valve

 Display Temperature differential control Determination of the temperature differential between collector temperature sensor S1 and cylinder temperature sensor S2. Solar circuit pump R1 on: "DT 1E" is exceeded Consumer 1 is being heated. Solar circuit pump R1 off: The actual temperature falls below the stop temperature differential "DT 1A" Determination of the temperature differential between collector temperature sensor S1 and cylinder temperature sensor S3. Solar circuit pump R1 and three-way diverter valve R2 on: "DT 2E" is exceeded. Consumer 2 is being heated. Solar circuit pump R1 and three-way diverter valve R2 off: The actual temperature falls below the stop temperature differential "DT 2A" Cyclical heating If the DHW cylinder cannot be heated with priority ("PRIO" 1), the next consumer in line will be heated for an adjustable cycle time "tUMW". After expiry of this time, the solar control unit checks the temperature rise at the collector during the cycle pause time "tSP". As soon as the start conditions for the consumer with priority ("PRIO" 1) have been met, that consumer will be heated again. Otherwise, the consumer with lower rank-inter will be heated again. Otherwise, the consumer with lower rank-interwill be heated again. Otherwise, the consumer with lower rank-interwill be heated again. Otherwise, the consumer with lower rank-interwill be heated again. Otherwise, the consumer with lower rank-interwill be heated again. Otherwise, the consumer with lower rank-interwill be heated again. Otherwise, the consumer with lower rank-interwill be heated again. Otherwise, the consumer with lower rank-interwill be heated again. Otherwise, the consumer with lower rank-interwill be heated again. Otherwise, the consumer with lower rank-interwill be heated again. Otherwise, the consumer with lower rank-interwill be heated again. Otherwise, the consumer with lower rank-interwill be heated again. Other	
 The actual temperature falls below the stop temperature differential "DT 2A" Cyclical heating If the DHW cylinder cannot be heated with priority ("PRIO" 1), the next consumer in line will be heated for an adjustable cycle time "tUMW". After expiry of this time, the solar control unit checks the temperature rise at the collector during the cycle pause time "tSP". As soon as the start conditions for the consumer with priority ("PRIO" 1) have been met, that consumer will be heated again. Otherwise, the consumer with lower rank- 	 Determination of the temperature differential between collector temperature sensor S1 and cylinder temperature sensor S2. Solar circuit pump R1 on: "DT 1E" is exceeded Consumer 1 is being heated. Solar circuit pump R1 off: The actual temperature falls below the stop temperature differential "DT 1A" Determination of the temperature differential between collector temperature sensor S1 and cylinder temperature sensor S3. Solar circuit pump R1 and three-way diverter valve R2 on: "DT 2E" is exceeded. Consumer 2 is being heated. Solar circuit pump R1 and three-way diverter valve R2
 Ing will continue to be neated. Once the consumer with priority has reached its set tem- 	 Solar circuit pump R1 and three-way diverter valve R2 off: The actual temperature falls below the stop temperature differential "DT 2A" Cyclical heating If the DHW cylinder cannot be heated with priority ("PRIO" 1), the next consumer in line will be heated for an adjustable cycle time "tUMW". After expiry of this time, the solar control unit checks the temperature rise at the collector during the cycle pause time "tSP". As soon as the start conditions for the consumer with priority ("PRIO" 1) have been met, that consumer will be heated again. Otherwise, the consumer with lower ranking will continue to be heated.

Consumer 1

Parameter	Delivered condition		Setting range
DT 1E		8.0 K	1.5 – 20.0 K
DT 1A		4.0 K	1.0 – 19.5 K
S1 SL		60 °C	4 – 90 °C

Note

"DT 1E" can be set at least 0.5 K higher than **"DT 1A"** and up to 0.5 K lower than **"DT 1S"** (see page 50). **"DT 1A/"** can be set at least 0.5 K lower than **"DT 1E"**.

Consumer 2

Parameter	Delivered condition	Setting range
DT 2E	8.0 K	1.5 – 20.0 K
DT 2A	4.0 K	1.0 – 19.5 K
S2 SL	60 °C	4 − 90 °C

Note

"DT 2E" can be set at least 0.5 K higher than **"DT 2A"** and up to 0.5 K lower than **"DT 2S"** (see page 50). **"DT 2A"** can be set at least 0.5 K lower than **"DT 2E"**.

Parameter	Delivered condition	Setting range
PRIO	1	0-2
tSP	2 min	1 – 30 min
tUMW	15	1 – 30 min

- **0** Priority consumer 1, no cyclical heating
- 1 Priority consumer 1, with cyclical heating
- 2 Priority consumer 2, with cyclical heating

Collector limit temperature

The solar circuit pump is switched OFF to protect the system components if the **"NOT"** temperature has been exceeded; the symbol "<u>\(\Lambda\)"</u> flashes.

Set value for "NOT" (see page 43).

Setting parameters	Delivered condition	Setting range
NOT	130 °C	110 – 200 °C

Note

This function is disabled at setting 200 °C.

Collector cooling function

The solar circuit pump will be switched off when the set cylinder temperature **"S SL"** is reached.

If the collector temperature rises to the set maximum collector temperature **"KMX"**, the pump will be switched on long enough to enable this temperature to fall 5 K lower (the symbol "☆" flashes). The cylinder temperature can then rise again, but only up to 90 °C; at that point, the solar circuit pump is switched off (the symbol "△" flashes).

- 1. Set "OKX" to "ON" (see page 43).
- 2. Select the "KMX" value.

Setting parameters	Delivered condition	Setting range
KMX	110 °C	90 – 190 °C

Minimum collector temperature limit

Minimum starting temperature **"KMN"** that must be exceeded before the solar circuit pump can start.

This prevents the pump starting too frequently (cycling). The pump is switched off, if the actual temperature falls 5 K below this temperature; symbol "🕸" flashes.

- 1. Set "OKN" to "ON" (see page 43).
- 2. Select the "KMN" value.

Minimum collector temperature limit (cont.)

Setting parameters	Delivered condition	Setting range	
KMN	10 °C	10 – 90 °C	

Frost protection function

Enable this function only when using water as heat transfer medium.

The solar circuit pump will be switched on to avoid collector damage, if the collector temperature falls below the **"KFR"** value.

The symbol "磔" is displayed if this function is enabled and flashes if the solar circuit pump is running.

- 1. Set "OKF" to "ON" (see page 43).
- 2. Select the "KFR" value.

Setting parameters	Delivered condition		Setting range
KFR	4	1 °C	−10 − +10 °C

Reverse cooling function

Enable only in systems with flat-plate collectors.

The **"ORUE"** function only makes sense if the collector cooling function has been enabled (see page 61).

The collector cooling function enables the heating of the DHW cylinder to a higher temperature than **"S SL"** (see page 52). In the evening, the pump will continue to run (symbol "茶" flashes) until the DHW cylinder has been cooled down via the collector and the pipework to the set cylinder temperature **"S SL"**.

Set "ORUE" to "ON" (see page 43).

Interval function

Activate the interval function in systems where the collector temperature sensor is not in an ideal location to prevent a time delay in capturing the collector temperature. For this, the solar circuit pump is started for 30 s when the collector temperature rises by 2 K.

Set "ORK" to "ON" (see page 43).

Heat statement

The heat statement is calculated from the temperature differential between the collector and cylinder temperature as well as the selected throughput (see service instructions "Vitosol").

- Set "OWMZ" to "ON" (see page 43).
- Check the throughput at the flow meter of the Solar-Divicon at 100 % speed and set that value as "VMAX".

- 3. Adjusting the frost protection of the heat transfer medium "MEDT".
- If necessary, adjust the mixing ratio of the heat transfer medium "MED %".

MEDT setting	Heat transfer medium
0	Water
1	Propylene glycol
2	Ethylene glycol
3	Viessmann heat transfer medium

Setting parameters	Delivered condition	Setting range	
VMAX	5.0 l/min		0.1 – 20 l/min
MEDT	3		0 - 3
MED %	40 %		20 – 70 %

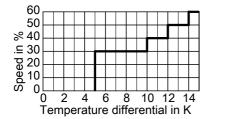
Speed control

Speed control is disabled at the factory (**"RPM"** set to 0, see page 33). It can only be enabled for relay output R1 (solar circuit pump).

The solar circuit pump must not have its own speed control. Set multi-stage pumps to the required stage.

Note

When using pumps with their own variable speed control, set **"RPM"** to 0.


The solar circuit pump will be switched on, if **"DT E"** is exceeded.

If the temperature differential rises to **"DT S"** (differential temperature for the start of the speed control), the speed is increased by 10% with every rise by the value selected in **"ANS"** (rise).

Speed control (cont.)

Setting parameters	Delivered condition	Setting range
n1MN	30 %	30 – 100 %
DT S	10 K	0.5 – 30 K
ANS	2 K	1 – 20 K

Example

DT E = 5 K DT S = 10 K ANS = 2 K

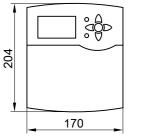
Enabling speed control

Set the required value for **"RPM"** (see page 33).

- 1 Standard solar circuit pumps (with integral auxiliary capacitor)
- 2 WILO pump with PWM input
- 3 GRUNDFOS pump with PWM input

Parts list

When ordering spare parts


Quote the part and serial no. (see type plate) and the position no. of the required part (as per this parts list). Obtain standard parts from your local supplier.

Parts

- 010 Collector temperature sensor
- 020 Cylinder temperature sensor
- 030 Strain relief pack, capacitor and fuse
- 040 Fuse, 4 A (slow)
- 050 Installation and service instructions
- 060 Operating instructions

Specification

Specification

Rated voltage	230 V~
5	
Rated frequency	50 Hz
Rated current	4 A~
Power consumption	2 W
	(in standby mode 0.7 W)
Protection class	II
IP rating	IP 20 D to EN 60529, ensure through design/instal-
	lation
Function	Type 1 B to EN 60730-1
Permiss. ambient temperature	
during operation	0 to +40 °C
	Installation in living spaces or boiler rooms (stand- ard ambient conditions)
during storage and transport	-20 to +65 °C
Pated broaking capacity of the	rolov

Rated breaking capacity of the relay outputs at 230 V~:

■ R2 4 (2) A ~

Appendix

Replace the PCB in the stated boiler control units in conjunction with the following functions:

- Suppression of reheating by the boiler
- Auxiliary function for DHW heating, achieved by the solar control unit

Control unit	PCB
Vitotronic 200, type KW1,	Part no. 7828 192
Part no. 7450 351, 7450 740	
Vitotronic 200, type KW2,	
Part no. 7450 352, 7450 750	
Vitotronic 300, type KW3,	
Part no. 7450 353, 7450 760	
Vitotronic 200, type GW1,	Part no. 7828 193
Part no. 7143 006	
Vitotronic 300, type GW2,	
Part no. 7143 156	
Vitotronic 333, type MW1,	Part no. 7824 030
Part no. 7143 421	

Service

Certificates

Declaration of conformity

We, Viessmann Werke GmbH & Co KG, D-35107 Allendorf, confirm as sole responsible body that the product **Vitosolic 100** complies with the following standards:

EN 55 014-1 EN 60 730

This product is designated $\mathbf{C}\mathbf{C}$ in accordance with the following Directives:

2004/108/EC 2006/95/EC

Allendorf, 1 October 2009

Viessmann Werke GmbH&Co KG

hm

pp. Manfred Sommer

Keyword index

Α

Anti-scalding protection6, \$	56
Applicability	72
Automatic mode41, 4	43
Auxiliary function for DHW heating	55

С

Changing settings	
Changing the fuse	
Changing values	.43
Checking sensors	.46
Collector cooling function	.61
Collector limit temperature	.61
Collector temperature sensor	.37
Commissioning	.41
Cyclical heating	.59
Cylinder temperature limit	.52
Cylinder temperature sensor	.38

D

-		
Declaration	of conformity6	8

Е

External heat exchanger53

F

Fault messages	46
Fitting the solar control unit	32
Frost protection function	62

Н

Hardware version	50
Heat statement	63
High limit safety cut-out	36

I

Interval function62

Μ

Manual mode4	3
Manual operation4	3
Maximum collector temperature limit. 6	1

Maximum	cylinder temperature	
oontrol		57

control					.57
Minimum	collector	tempe	erature	limit.	.61

Ν

```
Navigation through the menu......41
```

0

Operating steps	.41
Overview of electrical connections	.33

Ρ

Parts list	65
Power supply	39
Pump at R2	35
Pumps	33

R

Relay test	43
Restoring the delivered condition	43
Reverse cooling function	.62

S

Scanning temperatures	.45
Selecting the system scheme	.43
Setting system parameters	.43
Software version of the solar control	
unit	.50
Solar circuit pump	.33
Spare fuse	.47
Speed control	.63
Starting the solar control unit	.41
Suppressing reheating	
Control units with KM BUS	.52
Control units without KM BUS	.53
Switching the power ON	.41

Т

Temperature differential control52,	59
Temperature sensor	.38
Thermostat function	.55
Transfer	.57

Keyword index

Keyword index (cont.)

V

Valve at R2.....35

5442 276 GB

Applicability

Applicable for the Vitosolic 100, type SD1 Part no. 7438 086 Part no. 7418 199 Part no. 7418 200 Part no. 7418 201

> Viessmann Werke GmbH&Co KG D-35107 Allendorf Telephone: +49 6452 70-0 Fax: +49 6452 70-2780 www.viessmann.com

Viessmann Limited Hortonwood 30, Telford Shropshire, TF1 7YP, GB Telephone: +44 1952 675000 Fax: +44 1952 675040 E-mail: info-uk@viessmann.com