

VITOCELL 300-V/300-W Floorstanding DHW cylinder

160 to 500 litre capacity

Datasheet

Part no. and prices: See pricelist

Vertical DHW cylinder made from stainless steel

VITOCELL 300-V

Vitosilver 160 I, type EVIB-A, EVIB-A+ 200 I, type EVIB-A, EVIB-A+ 300 I, type EVIB-A 500 I, type EVIA-A Vitopearlwhite 500 I, type EVIA-A VITOCELL 300-W

Vitopearlwhite

160 I, type EVIB-A, EVIB-A+ 200 I, type EVIB-A, EVIB-A+ 300 I, type EVIB-A

Benefits

Type EVIB-A, 160 I

- Long lasting product thanks to corrosion-resistant stainless steel cylinder
- Hygienic and made to food hygiene standards with high surface quality
- Easy to maintain and no protective anode required, meaning no additional subsequent costs.
- Internal indirect coils that stretch right down to the cylinder floor heat up the entire water content

Delivered condition

Type EVIB-A

DHW cylinder with 160, 200 and 300 I capacity:

- Attached vacuum-insulated panels
- Sheet steel casing, epoxy-coated: Vitopearlwhite or Vitosilver
- Adjustable feet
- Cylinder and internal indirect coil made from stainless steel
- - 160, 200 I capacity: Integral welded sensor well for cylinder temperature sensor/
 - temperature controller with internal diameter 7 mm
 - 300 I capacity:

Clamping device for securing immersion temperature sensors to the cylinder jacket, each with fixing points for 3 immersion temperature sensors

- Inspection and cleaning aperture (A)
- B Vacuum-insulated panel
- Stainless steel cylinder
- © D Highly effective all-round thermal insulation
- Indirect coil made from stainless steel (Ē)

- High DHW convenience through rapid, even heat-up via generously sized indirect coils
- The DHW cylinder is equipped with vacuum-insulated panels for low heat losses.
- Available with 160 and 200 I capacity and with energy efficiency class A or A+
- Easy handling thanks to low weight and removable thermal insulation for version with 500 I capacity

Type EVIB-A+

DHW cylinder with 160 and 200 I capacity:

- Attached vacuum-insulated panels
- Sheet steel casing, epoxy-coated: Vitopearlwhite or Vitosilver
- Adjustable feet
- Cylinder and internal indirect coil made from stainless steel
- Integral welded sensor well for cylinder temperature sensor/ temperature controller with internal diameter 7 mm

VIESMANN 2

Benefits (cont.)

Type EVIA-A

DHW cylinder with 500 I capacity:

- Removable thermal insulation
- Polystyrene casing: Vitopearlwhite or Vitosilver
- Adjustable feet

- Cylinder and internal indirect coil made from stainless steel
- Thermometer
- Clamping device for securing immersion temperature sensors to the cylinder jacket, with fixing points for 3 immersion temperature sensors

Notes on continuous output

When designing systems with the specified or calculated continuous output, allow for a matching circulation pump. The stated continuous output is achieved only if the heat generator's rated heating output is \geq continuous output.

Sizing entry points

The actual dimensions of the DHW cylinder may vary slightly due to manufacturing tolerances.

Specification							
Туре		EVIE	3-A+		EVIB-A		EVIA-A
Cylinder capacity	I	160	200	160	200	300	500
(AT: Actual water capacity)							
Heating water capacity	I	7.	4	7.	4	11.0	12.9
Gross volume	I	167.4	207.4	167.4	207.4	311.0	512.9
DIN registration number				Applied for			9W71-10MC/E
Continuous output at heating water flow rate stated below							
 For DHW heating from 10 to 45 °C and following heating w 	a-						
ter flow temperatures							
90 °C	kW	4	6	4	6	61	69
	l/h	11	2/	112	27	1501	1688
80 °C	KVV	3	8	3	8	51	58
70 %		93	39	93	<u></u>	1252	1414
70 40	KVV	3	0	3	0	41	40
60 °C		14	+/	74	+/ >	998	1128
60 C	, KVV	2	Z 17		2	30 722	020
E0 °C		1	+/ 2	1	2	10	030
50 0	/ KVV	33	5 22	32	5	13/	101
- For DHW beating from 10 to 60 °C and following beating w		52	-2	52	.2	434	431
ter flow temperatures	α-						
90 °C	kW	3	9	3	9	52	59
	l/h	66	58	66	8	894	1011
80 °C	kW	3	1	3	1	41	46
	l/h	52	27	52	27	706	799
70 °C	kW	2	2	2	2	29	33
	l/h	37	72	37	2	501	568
Heating water flow rate for the stated continuous outputs	m³/h	3.	.0	3.	0	3.0	3.0
Standby heat loss	kWh/24	0.71	0.75	0.98	1.04	1.18	1.37
	h						
Permissible temperatures							
 Heating water side 	°C	160	160	160	160	160	160
– DHW side	°C	95	95	95	95	95	95
Permissible operating pressure							
 Heating water side 	bar	10	10	10	10	10	10
DUW -it-	MPa	1	1	1	1	1	1
– DHW side	bar	10	10	10	10	10	10
Dimonolono	MPa	1	1	1	I	1	I
Length a (0)							
- Incl. thermal insulation	mm	634	634	634	634	668	1022
– Excl. thermal insulation	mm						715
Width b							
 Incl. thermal insulation 	mm	661	661	661	661	706	1084
 Excl. thermal insulation 	mm	_	_	_	_	_	954
Height c							
 Incl. thermal insulation 	mm	1190	1410	1190	1410	1740	1852
 Excl. thermal insulation 	mm	-	—	—	—	—	1667
Height when tilted							
– Incl. thermal insulation	mm	1323	1520	1323	1520	1840	
- Excl. thermal insulation	mm		-				1690
Iotal weight Incl. thermal insulation	кg	57	65	57	65	92	110
Heating surface area	m²	1.	.0	1.	U	1.5	1.7
Connections (male thread)					1		
Heating water flow and return	ĸ		37	1	3/	1 ₄	1
DHW circulation	к Р		7/4 3/		74 3/	1	11/4
	1.	1	/4	1	/4		1 1

5414651

Туре		EVIE	3-A+		EVIB-A		EVIA-A
Cylinder capacity	1	160	200	160	200	300	500
(AT: Actual water capacity)							
Energy efficiency class		A	+	A	A	A	A
Colour						•	
– Vitocell 300-V		Vitos	silver		Vitosilver		Vitosilver
							or
							Vitopearlwhite
– Vitocell 300-W		Vitopea	arlwhite	Vi	topearlwh	ite	_

Dimensions of type EVIB-A, EVIB-A+, 160 and 200 I capacity

- BÖ Inspection and cleaning aperture
- E Drain
- HR Heating water return
- HV Heating water flow
- KW Cold water
- SPR Sensor well for cylinder temperature sensor, temperature controller (internal diameter 7 mm)
- WW DHW
- Z DHW circulation

Dimensions of type EVIB-A, EVIB-A+

Cylinder capacity	I	160	200
а	mm	634	634
b	mm	661	661
С	mm	1190	1410
d	mm	1062	1282
е	mm	850	892
f	mm	642	642
g	mm	342	342
h	mm	77	77
i	mm	344	344

Dimensions of type EVIB-A, 300 I capacity

- BÖ Inspection and cleaning aperture
- E Drain
- HR Heating water return
- HV Heating water flow
- KW Cold water R Additional c
 - Additional cleaning aperture and immersion heater
- SPR Clamping device for securing immersion temperature sensors to the cylinder jacket, each with fixing points for 3 immersion temperature sensors
- WW DHW
- Z DHW circulation

Dimensions of type EVIB-A

Cylinder capacity	I	300
а	mm	668
b	mm	706
С	mm	1740

Dimensions of type EVIB-A, 500 I capacity

- HR Heating water return
- ΗV Heating water flow
- KW Cold water
- R Additional cleaning aperture and immersion heater
- SPR Clamping device for securing immersion temperature sensors to the cylinder jacket, with fixing points for 3 immersion temperature sensors per clamping device WW DHW
- Ζ DHW circulation

Dimensions of type EVIA-A

Cylinder capacity	I	500
а	mm	1022
b	mm	1084
С	mm	1852

ΒÖ Inspection and cleaning aperture

Е Drain

Performance factor N_L to DIN 4708, upper internal indirect coil

Cylinder capacity	I	160	200	300	500
Performance factor NL					
Heating water flow temperature					
90 °C		3.5	6.6	10.5	21.5
80 °C		3.1	5.6	10.0	19.5
70 °C		2.3	4.6	9.5	17.0

The performance factor N_L depends on the cylinder storage temperature T_{cyl} .

• Cylinder storage temperature T_{cyl} = cold water inlet temperature + 50 K ^{+5 K/–0 K}

Standard values for performance factor NL

 $\blacksquare T_{cyl} = 60 \ ^{\circ}C \rightarrow 1.0 \times N_{L}$

$$\blacksquare T_{cyl} = 55 \ ^{\circ}C \rightarrow 0.75 \times N_{l}$$

 $\blacksquare~T_{cyl}$ = 50 $^{\circ}C \rightarrow 0.55 \times N_{L}$

 $\blacksquare \ T_{cyl}$ = 45 °C $\rightarrow 0.3 \times \ N_L$

Peak output over 10 min, relative to performance factor N_L

Cylinder capacity I	160	200	300	500
Peak output (I/10 min) for DHW heating from 10 to 45 °C				
Heating water flow temperature				
90 °C	251	340	430	634
2° 08	237	314	419	600
70 °C	207	285	408	556

Max. draw-off rate over 10 min., relative to performance factor N_L

Cylinder capacity I	160	200	300	500
Max. draw-off rate (I/min) for DHW heating from 10 to 45 °C,				
with reheating				
Heating water flow temperature				
90 °C	25.1	34.0	43.0	63.4
80 °C	23.7	31.4	41.9	60.0
70 °C	20.7	28.5	40.8	55.6

Drawable water volume

Cylinder capacity	I	160	200	300	500
Draw-off rate for cylinder volume heated to 60 °C	l/min	10	10	15	15
Drawable water volume without reheating Water at t = 60 °C (constant)	I	133	155	240	420

Heat-up time

The specified heat-up times will be achieved when the maximum continuous output of the DHW cylinder is made available at the relevant heating water flow temperature and when DHW is heated from 10 to 60 $^{\circ}$ C.

Cylinder capacity I	160	200	300	500
Heat-up time (min.) at heating water flow temperature				
90 °C	17	19	21	25
80 °C	20	24	30	33
70 °C	30	37	40	46

Pressure drop on the DHW side

2000

Heating water flow rate

3000

4000 5000¹

Pressure drop on the heating water side

- Cylinder capacity 160 and 200 I A
- B Cylinder capacity 300 I

© Cylinder capacity 500 I

- Cylinder capacity 160 and 200 I
- (A) (B) Cylinder capacity 300 I

ğ

in l/h

Cylinder capacity 500 I (C)

Cylinder bank specification

The DHW cylinders can be combined into banks with up to 2 cylinders (300 I) and up to 3 cylinders (500 I). The heating water and DHW headers are available ex works and must be ordered separately. Cylinder banks consisting of more than 3 cylinders can be assembled from several cylinder banks of up to 3 cylinders each. Connection of these cylinder banks on the heating water and DHW side to be performed on site.

Cylinder bank specification (300 and 500 I capacity)

Notes on continuous output

When designing systems with the specified or calculated continuous output, allow for a matching circulation pump. The stated continuous output is achieved only if the heat generator's rated heating output is \geq continuous output.

5414651

Cylinder bank specification (cont.)

Cylinder capacity		1	300		500
Total cylinder bank capacity		I	600	1000	1500
Number of DHW cylinders			2	2	3
Arrangement					
Continuous output at heating water flow rate s	tated be-				
low					
- For DHW heating from 10 to 45 °C and follow	ing heat-				
ing water flow temperatures					
	90 °C	kW	122	138	207
_		l/h	3002	3376	5064
	30 °C	kW	102	116	174
_		l/h	2504	2828	4242
	70 °C	kW	82	92	138
_		l/h	1996	2256	3384
	60 °C	kW	60	68	102
_		l/h	1466	1660	2490
	50 °C	kW	36	40	60
_		l/h	868	982	1473
– For DHW heating from 10 to 60 °C and follow	ing heat-				
ing water flow temperatures					
	90 °C	kW	104	118	177
_		l/h	1788	2022	3033
	80 °C	kW	82	92	138
_		l/h	1412	1598	2397
	70 °C	kW	58	66	99
		l/h	1002	1136	1704
Heating water flow rate for the stated contin-		m³/h	6	6	9
uous outputs					
Dimensions incl. thermal insulation					
Length a		mm	1495	2085	3158
Width b		mm	1008	1376	1376
Height d		mm	1740	1852	1852
Weight		kg	211	252	379
DHW cylinders with thermal insulation and					
headers					
Heating water capacity including headers		1	27.4	33.0	50.9
Heating surface area		m ²	3.0	3.4	5.1
Connections					
Heating water flow and return (flanged connection	on)	R	2	2	2
Cold water, DHW (male thread)		R	11⁄4	11⁄4	11/2

Cylinder bank specification (cont.)

Dimensions of cylinder bank

Example of 500 I capacity: Side view and plan view

- Е Drain on the heating water side (female thread R ¹/₂)
- EL Air vent valve (female thread R ¹/₂)

HR Heating water return ΗV Heating water flow

KW/E Cold water and drain on the DHW side

- ww DHW
- Ζ DHW circulation

Dimensions of cylinder bank

Cylinder capacity	I	300		500
Total cylinder bank capacity	I	600	1000	1500
Number of DHW cylinders		2	2	3
a	mm	1495	2085	3158
b	mm	1008	1376	1376
С	mm	226	402	404
d	mm	1740	1852	1852
e	mm	1606	1601	1601
f	mm	876	799	799
g	mm	327	470	470
h	mm	77	102	102
i	mm	220	210	210
k	mm	105	116	116
1	mm	360	538	538

Performance factor N_{L} to DIN 4708

Cylinder capacity	I	300		500
Total cylinder bank capacity	I	600	1000	1500
Number of DHW cylinders		2	2	3
Performance factor N _L				
Heating water flow temperature				
90 °C		36.0	65.8	95.0
80 °C		34.8	61.2	90.0
70 °C		33.2	54.0	85.0

■ The performance factor N_L depends on the cylinder storage temperature T_{cyl}

Cylinder storage temperature T_{cyl} = cold water inlet temperature + 50 K ^{+5 K/–0 K}

Standard values for performance factor NL

 $\blacksquare~T_{cyl}$ = 60 $^{\circ}C \rightarrow$ 1.0 × N_{L}

- $\label{eq:constraint} \begin{array}{l} \mathbf{T}_{cyl} = 55 \ ^{\circ}\mathrm{C} \rightarrow 0.75 \times \mathrm{N_{L}} \\ \mathbf{T}_{cyl} = 50 \ ^{\circ}\mathrm{C} \rightarrow 0.55 \times \mathrm{N_{L}} \\ \mathbf{T}_{cyl} = 45 \ ^{\circ}\mathrm{C} \rightarrow 0.3 \times \mathrm{N_{L}} \end{array}$

Cylinder bank specification (cont.)

Peak output over 10 min, relative to performance factor N_L

Cylinder capacity	I	300		500
Total cylinder bank capacity	1	600	1000	1500
Number of DHW cylinders		2	2	3
Peak output (I/10 min) for DHW heating from 10 to 45 °C	;			
Heating water flow temperature				
90 °C		860	1268	1902
80 °C		838	1200	1800
70 °C		816	1112	1668

Max. draw-off rate over 10 min., relative to performance factor $\ensuremath{\text{N}_{\text{L}}}$

Cylinder capacity	I	300		500
Total cylinder bank capacity	1	600	1000	1500
Number of DHW cylinders		2	2	3
Max. draw-off rate (I/min) for DHW heating from	n 10 to 45 °C, with re-			
heating				
Heating water flow temperature				
90 °C		86.0	126.8	190.2
80 °C		83.8	120.0	180.0
70 °C		81.6	111.2	166.8

Drawable water volume

Cylinder capacity	I	300		500
Total cylinder bank capacity		600	1000	1500
Number of DHW cylinders		2	2	3
Draw-off rate for cylinder volume heated to 60 °C	l/min	30	30	45
Drawable water volume without reheating		480	840	1260
Water at t = 60 °C (constant)				

Design information

Heating water flow temperatures in excess of 110 °C

For these operating conditions, DIN 4753 recommends the installation of a type-tested high limit safety cut-out in the DHW cylinder, which limits the temperature to 95 $^{\circ}$ C.

Warranty

Our warranty for DHW cylinders requires that the water to be heated meets the DHW quality in accordance with current potable water regulations and that existing water treatment systems work properly.

Heat transfer surface

The corrosion-resistant, protected heat transfer surface (DHW/heat transfer medium) complies with EN 1717/DIN 1988-100 version 2.

Immersion heater

When using third party products, the threaded immersion heater must have an unheated length of at least 130 mm.

Technical guide

For further details regarding the design and sizing: See the "DHW heating technical guide".

Design information (cont.)

Intended use

The appliance is only intended to be installed and operated in sealed unvented systems that comply with EN 12828 / DIN 1988, or solar thermal systems that comply with EN 12977, with due attention paid to the associated installation, service and operating instructions. DHW cylinders are only designed to store and heat water of potable water quality. Heating water buffer cylinders are only designed to hold fill water of potable water quality. Only operate solar collectors with the heat transfer medium approved by the manufacturer.

Intended use presupposes that a fixed installation in conjunction with permissible, system-specific components has been carried out.

Commercial or industrial usage for a purpose other than heating the building or DHW shall be deemed inappropriate.

Any usage beyond this must be approved by the manufacturer for the individual case.

Incorrect usage or operation of the appliance (e.g. the appliance being opened by the system user) is prohibited and results in an exclusion of liability.

Incorrect usage also occurs if the components in the system are modified from their intended use (e.g. through direct DHW heating in the collector).

Adhere to statutory regulations, especially concerning the hygiene of potable water.

Accessories

Safety assembly to DIN 1988

Components:

- Shut-off valve
- Non-return valve and test connector
- Pressure gauge connector
- Diaphragm safety valve

Up to 200 I cylinder capacity

- 10 bar (1 MPa): Part no. 7219722
- (A) 6 bar (0.6 MPa): Part no. 7265023
- DN 15/R ¾
- Max. heat input: 75 kW

Temperature controller

Part no. 7151989

- With a thermostatic system
- With selector on the outside of the casing
- Without sensor well
- With top-hat rail to be fitted to the DHW cylinder or the wall

Specification			
Connection	3-core lead with a cross-section of		
	1.5 mm ²		
IP rating	IP 41 to EN 60529		
Setting range	30 to 60 °C, adjustable up to 110 °C		
Switching differential	Max. 11 K		
Breaking capacity	6 (1.5) A 250 V~		
Switching function	With rising temperature from 2 to 3		
DIN registration number	DIN TR 1168		

From 300 I cylinder capacity

- 10 bar (1 MPa): Part no. 7180662
- (A) 6 bar (0.6 MPa): Part no. 7179666
- DN 20/R 1
- Max. heat input: 150 kW

541465

Circulation pump for cylinder heating

Part nos. 7172611 and 7172612

Pump type Part no.		Yonos PARA 25/6	Yonos PARA 30/6 7172612
		7172611	
Energy efficiency index EEI		≤ 0.2	≤ 0.2
Voltage	V~	230	230
Power consumption	W	3-45	3-45
Connection	G	11/2	2
Connecting cable	m	5.0	5.0
For heat generator		Up to 40 kW	From 40 to 70 kW

Dimensions

Curves

Δp-v (variable)

Thermometer, digital

Part no. ZK05265

For wall mounting

Digital display of two temperatures

Accessories (cont.)

Threaded elbow

For the installation of a cylinder temperature sensor for solar operation.

- Cylinder capacity up to 300 litres: Part no. 7175213
- Cylinder capacity 500 litres: Part no. 7175214

Immersion heater EHE

- Use the immersion heater only with soft to medium hard water up to 14 °dH (hardness level 2, up to 2.5 mol/m³).
- The heating output can be selected: 2, 4 or 6 kW

Components:

- High limit temperature cut-out device
- Temperature controller

Installed location

300 I capacity

500 I capacity

Accessories (cont.)

Specification for immersion heater EHE in conjunction with Vitocell

Cylinder capacity	I	300	500
Part no. of immersion heater EHE		Z021953	Z012681
		Z021954	Z021955
Content that can be heated by the immersion heat-	I	256	390
er			
Dimensions			
Width b (with immersion heater)	mm	792	1103
Minimum wall clearance for installation of the immer-			
sion heater EHE	mm	730	730
Weight			
Immersion heater EHE	kg	2	2

Specification – immersion heater EHE

Power	kW	2	4	6	
Rated voltage		3/N/P	3/N/PE 400 V/50 Hz		
IP rating			IP 45		
Rated current	A	8.7	17.4	8.7	
Heat-up time from 10 to 60 °C					
 Cylinder volume 300 l 	h	7.3	3.6	2.4	
 Cylinder volume 500 l 	h	11.4	5.7	3.8	

Transport aid

For easier handling of vertical DHW cylinders.

Part no. ZK05266

- For cylinder capacity up to 300 litres
- For DHW cylinders with rigid PUR foam thermal insulation

Part no. ZK01793

- For cylinder capacity 390, 400 and 500 litres
- For DHW cylinders with removable thermal insulation

Headers for cylinder banks

Heating water side

- Made from steel pipe
- DN 50
- DHW side
 - Made from stainless steel
- R 1¼
- For cold water and DHW

Permissible temperatures:

- DHW temperature: 95 °C
- Heating water flow temperature: 120 °C/160 °C
- Permissible operating pressure:

DHW side: 10 bar (1.0 MPa)

■ Headers on heating water side: 18 bar (1.8 MPa)/16 bar (1.6 MPa)

Total cylinder bank capacity	600 I	1000 I	1500 I
Heating water side			
Cylinder capacity			
3001	Part no.: 7265134	_	_
500 I	<u> </u>	Part no.: ZK02892	Part no.: ZK02893
DHW side			
Cylinder capacity			
3001	Part no.: 7265138	_	_
500	—	Part no.: ZK02894	Part no.: ZK02895

Viessmann Climate Solutions SE 35108 Allendorf Telephone: +49 6452 70-0 Fax: +49 6452 70-2780 www.viessmann.com Subject to technical modifications.

Viessmann Limited Hortonwood 30, Telford Shropshire, TF1 7YP, GB Telephone: +44 1952 675000 Fax: +44 1952 675040 E-mail: info-uk@viessmann.com

16 VIESMANN

VITOCELL 300-V/300-W